
SP2023 Week 13 • 2023-04-20

Crypto III: Block Ciphers 
(AES) 
Sagnik Chakraborty



Announcements

- Only 3 more meetings! Whaaaaattttt
- No meeting this Sunday
- Java Rev next Thursday with Suchit, Pete & Hassam
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Table of Contents

- What are block ciphers
- AES algorithm, modes

- Linear/Differential Cryptanalysis, Side channels (PO)
- An understanding of AES tends to lend itself well to other 

block ciphers!



Block Ciphers

- A type of deterministic encryption algorithm that operates on 
a plaintext of fixed length

- Typically, the plaintext is divided into “blocks” of 16 or 32 
bytes

- An algorithm is used to transform each block into an 
enciphered block, and then the results are joined together to 
form a ciphertext



AES

• Block cipher that operates on a fixed block length of 16 
bytes (128 bits)

• There are a total of 3 different bitlengths for the keys: 
AES-128, AES-192, AES-256

• For the sake of simplicity and due to its widespread use, we 
will stick with AES-128 for now. But the same ideas extend 
to higher key dimensions

• Encryption for AES-128 consists of 10 rounds of encryption, 
AES-192 is 12 rounds, AES-256 is 14 rounds



AES
There are 4 main components to AES encryption
- SubBytes uses a global substitution lookup table called the 

SBOX to substitute a set of bits in the current block, adding 
nonlinearity to the encryption

- ShiftRows shifts the rows of the current block by a certain 
offset amount, providing diffusion in the vertical direction.

- MixColumns applies a matrix multiplication operation to each 
column of the current block, providing diffusion in the 
horizontal direction.

- AddRoundKey performs a bitwise XOR operation between 
the current block and a round key derived from the cipher's 
key schedule, adding confusion to the process.



Math in a galois field - GF(28)

- GF(28) is represented by a characteristic polynomial P(x) = 
x8+x4+x3+x+1

- Operations with bytes is analogous to polynomial operations!
- So for example, \x34 = \b00100010 corresponds to x5+x modulo 

P(x)
- Example Multiplication within GF(28):

- {\x53} * {\xCA} = (x6+x4+x+1)(x7+x6+x3+x)
                 = (x13+x12+...+x8+x6+x5+...+x2+x) 
mod(x8+x4+x3+x+1)
                 = (11111101111110) mod (100011011)
                 = (000000001) mod (100011011) 

   = {\x01}



Math in GF(28)
              

          11111101111110 (mod) 100011011

         ^100011011     

          01110000011110

          ^100011011    

           0110110101110

           ^100011011   

            010101110110

            ^100011011  

             00100011010

              ^100011011  

               000000001



Why AES uses GF(28)

• All elements in GF(28) are singular bytes, which allows efficient 
byte-by-byte operations

• AES operations are invertible in GF(28), enabling fast encryption 
and decryption

• Using a simpler modulus (eg. generic pow of 2) can cause loss of 
the high bit during multiplication by 2, making operations complex.

• The linear and affine operations in AES are non-commutative and 
prevent simple matrix multiplication



AES from a symbolic perspective

- Consider that we have the input 128 by 128 bit block 
represented as a 4 byte by 4 byte message block (32 bits/col)

- Notice that this is actually in column major order. We 
keep track of this array and call it the state array



AES from a symbolic perspective

- AES also keeps track of collections of 4 bytes, known as 
words.

- As with the input array, we can also consider the 128-bit key 
as a 4 byte by 4 byte array.

- AES uses a substitution-permutation network where 
substitutions occur at the byte level while permutations 
occur at the word level

- Each of the 4 column words from the input bits are expanded 
into a key schedule of 44 words. 



AES from a symbolic perspective



AES from a symbolic perspective

- Step 1: SubBytes:
- A 16 by 16 global look up table called the SBOX is used to find a 

replacement byte given the current byte in the state array
- State[byte] ← Sbox[byte] for each byte in the state

- Entries of the are developed with the notion of multiplicative 
inverses in the field GF(28)

- This multiplicative inversion is followed by an affine transformation 
which we must have because 0 will never have a multiplicative 
inverse (corresponds to the 0x63 byte in the Rijndael SBOX)

- This also prevents you from stringing multiplicative inverses together
- Overall, this is the only source of nonlinearity in AES: very 

important



AES from a symbolic perspective

- Step 2: ShiftRows:
- The purpose of this step is to simply scramble the byte order 

within each 128-bit block. 
- Since we simply just permute the bytes within the rows, this 

operation is linear and invertible. Below is the representation of this 
on our state array



AES from a symbolic perspective

- Step 3: MixColumns:
- Each byte in the word columns are replaced by a function acting on 

that word
- Each byte specifically is replaced by 2 times that byte + 3 times the 

next byte in the column plus the byte that follows and then the next
- Keep in mind that we are still working in GF(28) so each “plus” represents a 

simple XOR and we multiply in a similar spirit from earlier



AES from a symbolic perspective

- Key Expansion and Step 4: AddRoundKey
- From our key matrix 

- We originally have a group of 4 words from our key that we expand 
into 43 via a similar fashion to the next slide

Key scheduling 



AES from a symbolic perspective
w0 w1 w2 w3  g

w4 w5 w6 w7  g

w8 w9 w10 w11
. . . . .



Round keygen algorithm

- Suppose we have 4 words of the round key for the ith round, 

[  wi   wi+1  wi+2  wi+3  ]

- As from the figure from the last slide, if we want to find wi+6  wi+7  wi+8  and wi+9 
we just follow the figure from above:

wi+5  = wi+4 ⊕ wi+1        wi+6  = wi+5 ⊕ wi+2       wi+7  = wi+6 ⊕ wi+3

- This leaves us with finding wi+4 
- The beginning of each round key is found by wi+4 =  wi  ⊕ g(wi+3)
- The group function g:

- Performs a one-byte circular left shift on the argument 4 byte word
- Performs a byte substitution from the SBOX
- XORS the bytes from the previous step with a round constant



RCON array

- Let RCON[i] be the round constant for the ith round, the word
[RC[i], x00, x00, x00]

- The RC part follows a simple DP:
RC[1] = x01
RC[i] = (x02 ·  RC[i-1] )GF(2**8) 



AES encryption
Encrypt(msg=M, key=K):=

   # key expansion

   round_keys = key_expansion(K)

   # initial round

   state = add_round_key(M, round_keys[0])

   # main rounds

   for i = 1 … 9:

      state = sub_bytes(state)

      state = shift_rows(state)

      state = mix_columns(state)

      state = add_round_key(state, round_keys[i])

   # final round

   state = sub_bytes(state)

   state = shift_rows(state)

   state = add_round_key(state, round_keys[10])

   output ciphertext C = state



AES vs DES

• AES is a key-alternating general permutation/substitution network 
operated block cipher, while DES is based on the Feistel structure 
of encryption 

• In AES, each round applies a diffusion-achieving transformation to 
the entire block, followed by the round key.

• The transformation in AES may involve a combination of linear 
and nonlinear steps.

• In contrast, DES transforms only one half of the block in each 
round, based on S-boxes and the round key.

• Key alternating ciphers are amenable to theoretical analysis of 
security.



Cipher Modes - ECB



Cipher Modes - AES

● Since each block of the input is encrypted 
independently (and not reliant on previous 
outputs/inputs), it is less secure



Cipher Modes



Cipher Modes

CFB(t)/OFB(b)



Cipher Modes - CTR



How to tell what mode’s been used

- Check for repeated bytes in the encryption, and if the ciphertext 
is of a multiple length of 16 bytes. This likely means that ECB 
was used

- If there is no sign of any repeated bytes but the ciphertext is still 
of a multiple length of 16 bytes, then either CBC or ECB 
encryption has likely been used

- If you have a black box encryption oracle available, try sending 
1 byte to the oracle. If you get back 1 byte, then this has likely 
been one of the stream modes (OFB/CFB), but if you get 16 
bytes, then it’s one of the whole-block modes



Possible Attack Vectors: 
Differential Cryptanalysis

- If the cipher exhibits some sort of non-random behavior based on 
how the plaintext bits change and if you can trace some equivalent 
transformation in the ciphertext, then it’s likely that the 
implementation is suspect to differential attacks

- In the context of AES, “differentials” are essentially the XOR value 
between two bytes since subtraction and addition are treated the 
same in GF(2) and GF(28)

- The way a differential propagates through the encryption rounds is 
independent of the round keys themselves



Differential Cryptanalysis

- Consider 2 known plaintext bitblocks, P1 and P2, and let the known 
XOR (diff) between them be ΔP

- Now suppose we now retrieve the corresponding enciphered 
blocks C1 and C2 and have the known diff be ΔC

- Let the final round output C1 = C1’ ^ K and C2 = C2’ ^ K where C1’ 
and C2’ are the SBOX outputs and K is the round key

ΔC = C1 ^ C2 = C1’ ^ K ^ C2’ ^ K = C1’ ^ C2’
- Thus, the final round differential is NOT dependent on the output of 

the round keys but rather the SBOX



Possible Attack Vectors: Linear 
Cryptanalysis
- Secure S-Boxes in block ciphers are designed to be resistant 

towards 2 kinds of cryptanalysis: linear and differential
- If an S-Box  linear, the output bitvector y of the substitution can be 

expressed as the bitwise XOR-sum of some linear combination of 
the input bitvector x

- Basically, there exist some vector b and some matrix in GF(2) A 
such that the output bitvector 

- y = A·x ⊕ b
- If this is the case, then we can possibly represent the 

AES/DES encryption as an affine transformation!!! 



P.<x> = PolynomialRing(GF(2))

T.<z> = GF(2^8, modulus=x^8 + x^4 + x^3 + x + 1)

PR = PolynomialRing(T, [f'm{i}' for i in range(16)])

Mgens = PR.gens()

def __shift_rows(self, M):

       s = [list(r) for r in M.rows()]

       s[0][1], s[1][1], s[2][1], s[3][1] = s[1][1], s[3][1], s[2][1], s[0][1]

       s[0][2], s[1][2], s[2][2], s[3][2] = s[1][2], s[0][2], s[3][2], s[2][2]

       s[0][3], s[1][3], s[2][3], s[3][3] = s[1][3], s[0][3], s[3][3], s[2][3]

       return Matrix(s)

def __mix_columns(self, M):

   S = Matrix(T, [

       [T.fetch_int( 2), T.fetch_int( 3), T.fetch_int( 1), T.fetch_int( 1)],

       [T.fetch_int( 3), T.fetch_int( 2), T.fetch_int( 3), T.fetch_int( 1)],

       [T.fetch_int( 1), T.fetch_int( 1), T.fetch_int( 2), T.fetch_int( 3)],

       [T.fetch_int( 1), T.fetch_int( 1), T.fetch_int( 1), T.fetch_int( 2)],

   ])

   return S*M



Linearity of AES without SubBytes 
and AddRoundKey
These two operations are completely linear, and thus it is possible to represent the 
encryption as a matrix transform with the ciphertext y = Ax 
In this toy implementation, x can be represented as a single vector of elements m0 to m15, each of which are elements of GF(28)

When we call ShiftRows and MixColumns, for every single element of x, we apply some sort 
of transformation on each bit as a polynomial in GF(28) acting on each of the message 
elements. 

The AddRoundKey scheduling/expanding operations on the key
and the substitution rounds from the linear s-box correspond to an additional Affine 
component



Check for linearity of an SBOX

- It’s very easy to check for the linearity of an sbox
- For all possible i,j within 0 to 255, 

if S[i^j^0] = S[i] ^ S[j] ^ S[0], then the sbox is linear, and 
it is possible to bring the entirety of AES into the form 
A·x ⊕ b



General Idea for extracting A and 
b
- If you have an sbox that you have proven to be linear, the 

entirety of the AES cipher (with other things constant) is 
basically an affine transformation over GF(2)

- Simulate the encryption using a symbolic representation: 
sagemath, github, and past CTF chals are your friends!!!



Possible Attack Vectors: Padding 
Oracle Attack
•  If a plaintext has been encrypted in AES-CBC Mode, 

then you can implement a kind of side-channel attack to 
send modified ciphertexts that have been intentionally 
tampered with

• Suppose we have an oracle available to us that can 
provide us insight into whether or not a padding scheme 
input is valid or not

• If we are able to modify an initialization vector, the oracle 
can return to us whether or not the given IV was 
“accepted” based on if the ciphertext padding was valid



PO Attack

So we basically have [0x3C] ^ [x] 
= 0x01 which has been returned 
as valid from the server.
By the definition of XOR, this must 
mean that [x] = 0x01 ^ 0x3C = 
0x3D
From there, we just need to xor 
this byte with the corresponding 
byte from the CT to get the 
plaintext byte!



Possible Attack Vectors: Padding 
Oracle Attack

Of course, we have tools that can automate this process

Tools:
Bletchley: https://code.blindspotsecurity.com/trac/bletchley
PadBuster: https://github.com/GDSSecurity/PadBuster
POET: http://netifera.com/research/
Python-Paddingoracle: 
https://github.com/mwielgoszewski/python-paddingoracle

https://code.blindspotsecurity.com/trac/bletchley
https://github.com/GDSSecurity/PadBuster
http://netifera.com/research/
https://github.com/mwielgoszewski/python-paddingoracle


Resources for block cipher chals

• Guess the research paper! 
• https://crypto.stackexchange.com/
• SageMath 
• further explanation of AES symbolically: 

https://engineering.purdue.edu/kak/compsec/NewLectures/L
ecture8.pdf

https://crypto.stackexchange.com/
https://engineering.purdue.edu/kak/compsec/NewLectures/Lecture8.pdf
https://engineering.purdue.edu/kak/compsec/NewLectures/Lecture8.pdf
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